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Monte Carlo simulation of loop-erased self-avoiding random walks in two and three dimensions
(2D and 3D) was performed, using an algorithm different from that of Guttmann and Bursill. We
obtained 2r = 1.571 in 2D and 2v = 1.230 in 3D. The 3D result compares most favorably with
that of Guttmann and Bursill [J. Stat. Phys. 59, 1 (1990)]. Lawler’s conjecture [J. Stat. Phys.
50, 91 (1988)] that loop-erased self-avoiding random walks are in a different universality class than

self-avoiding random walks is strengthened.

PACS number(s): 05.20.—y

I. INTRODUCTION

There are many simple examples of power laws in
physics where the exponent is a rational fraction. How-
ever, there is a broad class of phenomena where power
law behavior occurs but the exponent is not a simple
fraction. Phenomena for which there exists a critical
point are just one class of such examples. The study
of self-avoiding random walks is one of many examples
exhibiting a power law whose exponent is not a simple
fraction.

The numerical simulation of the self-avoiding walk
(SAW) on a lattice has been the subject of intense study
over many decades. This popularity may be attributed
to the fact that the SAW provides a useful, simple model
for a variety of complex phenomena: in chemistry, the
flexible polymer molecule [1,2]; in physics, the N — 0
limit of the N-vector model [3-5]; and in mathematics, a
concrete example of a non-Markovian process [6].

Despite many years of effort, there exist few rigorous
results when the dimensionality d of the walk is greater
than 1.

Consider the usual SAW [7] on the d-dimensional in-
teger lattice. For a walk of m steps, we let R,, denote
the end-to-end distance; that is, the Euclidean distance
from the initial point to the final point of the walk. If
(RZ2,) denotes the mean square end-to-end distance aver-
aged over all SAW’s of length m, then we may write the
power law as

(Rp,) ~m®, 1)

where v is the critical exponent. We write f(m) ~ g(m)
to mean that C = lim,, . f(m)/g(m) exists and 0 <
C < oo. It is believed that this relationship holds for
every dimension with the exception of d = 4, where it is
generally held that the growth rate is m (log m)l/ 4,
Clearly, 2v = 2 for d = 1. For d = 2 Nienhuis [8,9] has
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shown that 2v = 3/2, in agreement with the heuristic
result of Flory [1] that 2v = 6/(d+ 2) for 1 < d < 4
and 2v = 1 for any d > 4. Although Flory’s argu-
ment is flawed, its results appear to be correct for all
dimensions except d = 4, where the logarithmic correc-
tion noted above is needed, and d = 3, where the best
Monte Carlo work [10], the best series solutions [11,12],
and the best renormalization group calculations [13] give
2v = 1.180 £+ 0.008. Hara and Slade [14,15] have recently
given a rigorous proof that Flory’s conjecture is correct
when d > 4.

More recently Lawler [16] introduced another type
of self-avoiding walk called the loop-erased self-avoiding
walk (LESAW). To generate a LESAW, one performs a
classical random walk of n steps, which we call a gen-
erating random walk, and scans the list of nodes vis-
ited, searching for self-intersections. Wherever a self-
intersection occurs, the intervening “loop” is erased. Af-
ter all such loops have been erased, including immediate
reversals, the result is a self-avoiding walk which we call
the derived SAW. We denote the number of steps in this
derived walk by N,,. See [17] for a rigorous discussion of
this construction. We note that distinct random walks
can produce the same LESAW.

Evidence is accumulating which suggests that
LESAW'’s and SAW’s are in different universality classes,
and the results of this paper provide further evidence.
Lawler [18] has shown that (RZ) for LESAW’s grows as
fast as m®/% for d = 3 and probably faster. Guttmann
and Bursill [17] have performed Monte Carlo simulations
of LESAW’s in d = 2 and d = 3. Their estimated values
were 2v = 1.600 + 0.006 in d = 2 and 2v = 1.232 4+ 0.008
in d = 3; this contrasts with 1.500 and 1.180 =+ 0.008,
respectively, for SAW’s (see Table III below).

II. BATCH AND DYNAMIC ERASURE

Monte Carlo estimates of v for LESAW’s can be ob-
tained in at least two distinct ways. On the one hand,
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one may fit data to the model
(Nn) ~nt/2, (2)

although the connection between this model and the rela-
tion (1) may not be immediately evident. We call such a
scheme a batch-erasing algorithm because the program-
mer knows a priori how many steps n of a generating
classical random walk must be simulated in order to ob-
tain the derived SAW.

Guttman and Bursill used the batch algorithm in [17].
They generated 170000 classical random walks, each of
204 800 steps, in both d = 2 and d = 3. In each walk
loops were erased as they occurred and the number of
self-avoiding steps N,, was recorded for the ten values
of n between 400 and 204 800, geometrically distibuted
with a common ratio of 2. The mean values (N, ) were
determined and a regression was run for log (N,,) versus
log n, yielding the the values of v quoted in the previous
section.

Relation (2) is equivalent to the relation (N,)* ~ n.
Furthermore, it is well known that <R,2L> ~ n for the
classical random walk. Finally, R2 for a classical random
walk has the same value as R}"V" for the derived SAW,
since the endpoints of the walks are the same. Combining
these observations yields

(R,) ~ (Na)™. 3)

This relation is similar in form to model (1) but suggests
that, unlike model (2), the independent variable should
be the length of the walk after loop erasure. That is,
m = N,, for some unpredictable value n > m. It seems
reasonable to conjecture that fitting experimental data
concerning LESAW’s to the relation (1) with m so de-
fined would give rise to the estimates of 2v similar to
those yielded up by the batch-erased algorithm. To test
this, one should generate classical random walks, erasing
loops as they occur, until the derived SAW reaches a pre-
determined length m. Since the length of the generating
random walk cannot be predicted in advance, but only
by monitoring the evolving SAW, we call this algorithm
dynamic loop erasing.

Guttmann and Bursill performed dynamic loop-erasing
experiments in [17], but report that preliminary results
were relatively inaccurate and so they did not pursue this
avenue any further. They cite results for d = 2 only, and
the experimental error given (£0.1) makes it impossible
to distinguish between the conjectured exact figure of
2v = 3/2 for SAW’s and their experimental result of
2v = 1.600 for LESAW’s.

The motivation for this work is twofold. First, we
wished to investigate the dynamic model for d = 2 and
d = 3 for its own sake and determine numerically the val-
ues of its critical exponents. As well, we hoped to lend
empirical evidence to justify the conjecture enunciated
above relating models (1) and (2).

III. EXPERIMENT AND RESULTS

Using the dynamic algorithm we generated 100 000 LE-
SAW’s of 3000 steps each on a square lattice (d = 2) and

on a cubic lattice (d = 3). We measured R2, for a variety
of values of m, the number of steps in the derived SAW.
The results are summarized in Tables I and II. A plot of
log <an> versus logm establishes a linear relation, the
coefficents of determination being 0.9995 and 0.9998, re-
spectively, in dimensions 2 and 3. We then performed a
weighted linear regression, weighting with the estimated
variance of log <R,2n> [19]. We used the propogation of
error method and estimated the variance as

2
o
R%)

(RZ)*

2 ~
Tlog(R2,) &

Using this technique we estimate 2v to be 1.571 with a
standard error of 0.006 for d = 2. For d = 3, the figure
is 2v = 1.230 with a standard error of 0.003. In Table
III, these are compared to Guttman and Bursill’s figures
(1.600 and 1.232) and those for SAW’s.

Our experiments were performed on a DEC Alpha3000
workstation purchased by Adelphi University. The CPU
times were 22.5 days and 3.9 days, respectively, for d = 2
and d = 3.

TABLE I. Mean square end-to-end distances for dynamic
loop-erased SAW'’s in two dimensions.

m (R2)) Std. Dev.
10 31.40 16.01
20 94.00 49.13
50 400.3 211.2

100 1206 642.4

200 3663 1943

300 6942 3700

400 11050 5896

500 15690 8430

600 21010 11440

700 26790 14660

800 33170 18160

900 40100 22060

1000 47300 25990
1100 54840 30070
1200 62890 34480
1300 71370 39160
1400 79880 43700
1500 88760 48940
1600 98000 54110
1700 107700 59390
1800 117400 64860
1900 127000 70400
2000 136800 76370
2100 146800 82200
2200 156700 88270
2300 166300 94660
2400 175900 101700
2500 184900 108200
2600 193900 114900
2700 202000 121600
2800 208800 128200
2900 214300 133700
3000 217500 137500
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TABLE II. Mean square end-to-end distances for dynamic
loop-erased SAW'’s in three dimensions.

TABLE IV. Guttmann and Bursill’s data set for two di-
mensions.

m (RZ) Std. Dev.
10 18.35 10.45
20 43.85 26.47
50 138.1 87.19

100 326.5 210.5

200 773.0 501.2

300 1277 832.5

400 1820 1189

500 2405 1572

600 3008 1967

700 3643 2387

800 4288 2814

900 4963 3258

1000 5638 3706
1100 6335 4172
1200 7037 4645
1300 7751 5120
1400 8483 5610
1500 9237 6114
1600 10000 6625
1700 10750 7123
1800 11500 7625
1900 12250 8125
2000 13000 8653
2100 13760 9177
2200 14510 9689
2300 15240 10210
2400 15980 10740
2500 16700 11280
2600 17380 11800
2700 18040 12320
2800 18660 12800
2900 19220 13280
3000 19650 13650

IV. CONCLUSIONS

Our results strongly suggest that the critical exponent
for the three-dimensional LESAW is estimated equally
well by the batch-erased and dynamic-erased algorithms.
The estimate of Guttmann and Bursill falls less than one
standard error from our figure and our estimate falls well
within the bounds they quote. In two dimensions, there
is evidently some disagreement between the batch-erased
and dynamic-erased estimates.

Our initial run of this experiment involved 50 000 LE-
SAW’s, each 2000 steps long after loop erasure. We were
surprised to find the results were not in agreement with
those in [17], and so we first increased the number of LE-

TABLE III. A comparison of the critical constants
for LESAW’s using the dynamic algorithm of this work, the
batch algorithm of Guttmann and Bursill, and the critical
constants for SAW’s.

Dynamic Batch SAW
2D 1.571 + 0.006 1.600 % 0.006 1.500
3D 1.230 £ 0.003 1.232 + 0.008 1.18 + 0.008

n (Nn)
400 52.2
800 81.0

1600 125.4

3200 194.2

6400 299.8

12800 461.7
25600 710.7
51200 1095.4
102400 1690.1
204800 2606.6

SAW’s to 100000 and we then increased the length of
the walks to 3000 steps. We found the estimates of the
critical exponent to be surprisingly insensitive to these
increases in run size. Our estimate of 2v based on 50 000
walks of length 2000 was 1.570 with a standard error of
0.007. Increasing the number of LESAW’s to 100 000 had
the effect of decreasing 2v by 1 in the fourth decimal place
and the standard error by 1 in the sixth decimal place.
The results of subsequently increasing the length of the
walk to 3000 steps are those reported in this paper, and
were significant only in the third decimal place.

Both our two-dimensional and our three-dimensional
results were generated by the same C program, which
was coded to take the dimension of the lattice as a pa-
rameter. This appears to eliminate the possibility that
the difference in our two- and three-dimensional results
when contrasted to the corresponding batch-erased es-
timates is due to a difference in programming logic or
pseudorandom number generation. This, along with the
robustness of our two-dimensional estimates with respect
to sample size, leads us to suggest that the differences
in the estimates may be due to differences in the algo-
rithms. The two procedures clearly generate different
sample spaces, and this may result in different estimates
of 2v, differences which are negligible in three dimensions
but measurable in two dimensions.

We performed an additional piece of statistical analysis
on the data in Table I. In [17], ten values of (IV,) are tab-
ulated, corresponding to values of n distributed geomet-
rically between 400 and 204 800; see Table IV. We chose
the nine data points in our Table I for which the value
of m most closely match a reported value of (NV,,) (since
both 81.0 and 125.4 round to 100, we have one fewer data
point). Using this reduced data set—the lines in Table I
corresponding to m = 50, 100, 200, 300, 500, 700, 1100,
1700, and 2600—we performed a weighted least squares
analysis in the manner described in Sec. III. This yielded
an estimate of 1.577 for 2v with a standard error of 0.008.
We note that this estimate of 2v is within one standard
error of the result using the full data set.

Using this data, we see that a 95% confidence interval
for 2v falls short of the figure 1.600 given in [17], but
a 99% confidence interval for 2v is (1.549,1.606), which
includes the entire range given by Guttmann and Bursill
and still comfortably excludes the value 1.500, believed
to be the critical exponent for the SAW.
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